Serendipitous Recommendations on Knowledge Graphs of Music
Oliver Baumann
Prof. Dr. Mirco Schoenfeld
CIRCLE 2022 — 6th July 2022
Serendipity
“I define serendipity as the art of making an unsought finding.” Van Andel (1994)
Serendipity and RecSys
- increased user engagement
- increased catalog coverage
\[\begin{align} |V_{Genre}| &= 2\ 126\\ |V_{Track}| &= 250\ 654\\ |E| &= 1\ 149\ 345\\ \overline{deg}_{Genre} &\approx 541 (\pm\ 2\ 130)\\ \overline{deg}_{Track} &\approx 5 (\pm\ 4)\\ \end{align}\]
Scoring functions
Recommendation Candidates
How to evaluate such a system?
Beyond-accuracy measures
- Novelty
- Diversity
Novelty: Unexpectedness
\[\begin{equation*} Unexp(R) = \frac{1}{|R||H|}\sum_{r \in R}\sum_{h \in H} d(r, h) \end{equation*}\] Castells, Hurley, and Vargas (2015)
- distance of recommendations to users’ history
- \(d(\cdot)\) can be any distance measure, we used cosine distance
Diversity: Intra-list diversity
\[\begin{equation*} ILD(R) = \frac{1}{|R|(|R|-1)}\sum_{i\in R}\sum_{j\in R} d(i, j) \end{equation*}\] Castells, Hurley, and Vargas (2015)
- average distance of recommendations to each other
- \(d(\cdot)\) can be any distance measure, we used cosine distance
Diversity: Structural
\[\begin{equation*} DGC(G') = 1 - \frac{1}{|G'|-1}\sum_{i=1}^{|G'|} (2i - |G'| - 1)\frac{deg(w_{i})}{\frac{|E'|}{2}} \end{equation*}\] Sanz-Cruzado, Pepa, and Castells (2018)
- based on Gini index
- degree disparity: how skewed is the degree distribution
DGC: Example
Results
Future Work
- extend knowledge graph with other classes
- extend model to other collections than music
- users’ opinion!
Thanks!
@olibaumann
oliver.baumann@uni-bayreuth.de